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We consider the problem of finding the minimal-size factorization of the provenance of self-join-free conjunc-

tive queries, i.e., we want to find a formula that minimizes the number of variable repetitions. This problem is

equivalent to solving the fundamental Boolean formula factorization problem for the restricted setting of the

provenance formulas of self-join free queries. While general Boolean formula minimization is Σ
𝑝

2
-complete,

we show that the problem is NP-complete in our case. Additionally, we identify a large class of queries that

can be solved in PTIME, expanding beyond the previously known tractable cases of read-once formulas and

hierarchical queries.

We describe connections between factorizations, Variable Elimination Orders (VEOs), and minimal query

plans. We leverage these insights to create an Integer Linear Program (ILP) that can solve the minimal

factorization problem exactly. We also propose a Max-Flow Min-Cut (MFMC) based algorithm that gives an

efficient approximate solution. Importantly, we show that both the Linear Programming (LP) relaxation of our

ILP, and our MFMC-based algorithm are always correct for all currently known PTIME cases. Thus, we present
two unified algorithms (ILP and MFMC) that can both recover all known PTIME cases in PTIME, yet also
solve NP-complete cases either exactly (ILP) or approximately (MFMC), as desired.
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ment systems.
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1 INTRODUCTION
Given the provenance formula for a Boolean query, what is its minimal size equivalent formula?
And under what conditions can this problem be solved efficiently? This paper investigates the

complexity of minFACT, i.e. the problem of finding a minimal factorization for the provenance of

self-join-free conjunctive queries (sj-free CQs). While the general Boolean formula minimization is

Σ
𝑝

2
-complete [7], several important tractable subclasses have been identified, such as read-once

formulas [32]. In this paper, we identify additional tractable cases by identifying a large class of

queries for which the minimal factorization of any provenance formula can be found in PTIME.
We focus on provenance formulas for two key reasons: 1) Provenance computation and storage

is utilized in numerous database applications. The issue of storing provenance naturally raises the

question: How can provenance formulas be represented minimally? This problem has previously

been investigated in this context [50, 51], where algorithms were described for factorizations with
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Fig. 1. This paper gives hardness results, identifies PTIME cases, and gives exact and approximate algorithms
for self-join-free conjunctive queries. We prove that the tractable queries for minFACT reside firmly between
the tractable cases for probabilistic query evaluation (PROB) = the hierarchical queries with one minimal query
plan, and those for resilience (RES) = queries without active triads. The open cases are linear queries with ≥ 3

minimal query plans (though we know that 𝑄∞
4

is in PTIME), and linearizable queries with deactivated triads
and without co-deactivated triads (though we know that the triangle unary query 𝑄△

𝑈
is in PTIME).

asymptotically optimal sizes, leading to work on factorized databases. However, finding instance-

optimal factorizations i.e. factorizations that are guaranteed to be the smallest possible, for any

arbitrary input, remains an open challenge, and is the focus of our work.

2) Minimal factorizations of provenance formulas can be used to obtain probabilistic inference

bounds. Prior approaches for approximate probabilistic inference are either incomplete i.e. focus on

just PTIME cases [17, 54, 56], or do not solve all PTIME cases exactly [17, 28]. As we show, using

minimal factorization as a preprocessing step achieves the best of both worlds: It is complete (i.e. it

applies to easy and hard cases) while recovering all known PTIME cases exactly.

In this paper, we prove that the minimal factorization problem is NP-complete (NP-C) for
provenance formulas, and give two algorithms for all sj-free CQs that are unified algorithms in

the sense that they solve all known tractable cases in PTIME, and provide approximations for hard

cases. We further place the set of tractable queries firmly between the tractable queries for two

other related problems: resilience [24] and probabilistic query evaluation [16] (Fig. 1).

Contributions & Outline. 1 The minFACT problem has strong ties to the diverse problems of

Boolean factorization, factorized databases, probabilistic inference, and resilience, among others.

Section 2 explains these connections before Section 3 formalizes the problem. 2 Section 4 describes

connections between provenance factorizations, variable elimination orders (VEOs) and query plans.
These connections allow us to reformulate minFACT as the problem of assigning each witness to

one of several “minimal VEOs.” 3 Section 5 develops an ILP encoding to solve minFACT for any

sj-free CQ exactly. We are not aware of any prior ILP formulation for minimal-size encodings of

propositional formulas, for restricted cases like for monotone formulas. 4 Section 6 describes

our two unified PTIME algorithms that are exact for all known PTIME cases, and approximations

otherwise. The first one encodes the problem in the form of a “factorization flow graph” s.t. a

minimal cut of the graph corresponds to a valid factorization of the instance. We refer to this

algorithm as the MFMC (Max-Flow Min-Cut) based algorithm. The second is an LP relaxation of our

ILP encoding, for which we also prove a guaranteed constant factor approximation for hard queries.
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5 Section 7 proves that both our unified algorithms can solve the minFACT problem exactly if

the database instance allows a read-once factorization. This implies that our algorithms recover

and generalize prior approaches [54] that are limited to read-once formulas. 6 Section 8 provides

a large class of queries for which our PTIME algorithms can solve the minFACT problem exactly

over any database instance. This class includes hierarchical queries as a strict subset, proving that

the tractable queries for minFACT are a strict superset of those for probabilistic query evaluation

(PROB) [17]. 7 Section 9 proves that the decision variant of minFACT isNP-C for a set of queries that

form a strict superset of queries that contain “active triads”. This result proves that the intractable

queries for minFACT are a strict superset of those that are intractable for resilience (RES) [24],
thereby bounding the tractable queries for our problem firmly between those tractable for PROB
and those tractable for RES.

Appendix. The appendix contains details about notations and some additional discussion about

related work. However, a much longer online appendix [43] contains all proofs, more illustrating

examples, and further discussions. It also shows that using minimal factorization can lead to more

accurate probabilistic inference [43]. We also perform experiments evaluating the performance and

results of the ILP encoding, LP relaxation, or MFMC-based algorithm [43].

2 RELATEDWORK
Boolean Factorization.MinimumEquivalent Expression (MEE) is the problem of decidingwhether

a given Boolean formula 𝜑 (note that we use the terms expressions and formulas interchangeably)

has a logically equivalent formula 𝜑 ′ that contains ≤ 𝑘 occurrences of literals. It was known to be

at least NP-hard for over 40 years [26, Section 7.2] and was shown to be Σ2

𝑝 -complete only 10 years

ago [7]. The problem is more tractable for certain restrictions like Horn formulas [38] as input, or if

allowing arbitrary Boolean functions as connectors [39], or if posed as the Minimum Formula Size

Problem (MFSP) that takes the uncompressed truth table as input [2, 40]. There is a lot of work on

approximate Boolean function factorization [45, 47], however efficient, exact methods are limited

to classes such as read-once [32] and read-polarity-once formulas [9] (see [14, Section 10.8] for a

detailed historical overview). Our problem restricts the formula to be minimized to the provenance

of a sj-free conjunctive query (i.e. a monotone,𝑚-partite DNF that follows join dependencies), with

the goal of uncovering important classes that permit a PTIME exact evaluation. An illustration of

an overview of known results can be found in the full online appendix. [43, Fig 7] To the best of our

knowledge, no prior work has provided a general approach for finding the minimal factorization

of monotone 𝑘-partite Boolean formulas given as DNFs, and we are unaware of prior work that

provides an ILP for the problem, even under restricted settings.

Factorized Databases and Related Work on Factorization. Our problem has been studied

before in the context of Factorized Databases (FDBs) [49–52]. Five key differences in focus are: (𝑖)

The tight bounds provided through that line of work are on “readability” i.e. the lowest 𝑘 such

that each variable in the factorized formula is repeated at most 𝑘 times. The work shows that the

class of queries with bounded readability is strictly that of hierarchical queries [51]. In contrast,

we focus on the minimal number of variable repetitions and show this can be calculated in PTIME
for a strict superset of hierarchical queries. (𝑖𝑖) For bounds on the minimal length (as is our focus),

FDBs focus only asymptotic bounds on the size of query result representations [52] whereas we

focus on minimizing the exact number of variables (e.g. whether a provenance is read-once or has

a factor 2 bigger size is of no relevance in the asymptotic analysis of FDBs). (𝑖𝑖𝑖) variants of FDBs

permit the reuse of intermediate results, i.e. they focus on the corresponding circuit size, while
we focus on formulas. (𝑖𝑣) Intuitively, FDBs study the trade-offs between applying one of several

factorizations (or query plans or variable elimination orders) to the entire query results at once,
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whereas we may factorize each witness in different ways. (𝑣) Except for [50], the work on FDBs

focuses on factorizations in terms of domain values whereas provenance formulas are defined in

terms of tuple variables (e.g, a tuple from an arity-3 relation has 3 different domains, but is still

represented by a single tuple variable). These discrepancies lead to different technical questions and

answers. Also related is the very recently studied problem of finding a factorized representation of

all the homomorphisms between two finite relational structures [5]. Similar to FDBs, that work

also differs from ours in that it focuses on the asymptotic factorization size (and proves lower

bounds and allows a circuit factorization instead of a formula). Our problem is also different from

the problem of calculating a “𝑝-minimal query” for a given query [3]: The solution to our problem

depends on the database instance and factorizes a given provenance formula, whereas the latter

problem is posed irrespective of any given database, chooses among alternative polynomials, and

becomes trivial for queries without self-joins.

Probabilistic Inference, Read-Once Formulas, and Dissociation. Probabilistic query evalu-

ation (PROB) is #P-hard in general [17]. However, if a provenance formula 𝜑 can be represented in

read-once form then its marginal probability P[𝜑] can be computed in linear time in the number

of literals. Olteanu and Huang [48] showed that the previously known tractable queries called

hierarchical queries lead to read-once factorizations. A query 𝑄 is called hierarchical [17] iff for

any two existential variables 𝑥,𝑦, one of the following three conditions holds: at(𝑥) ⊆ at(𝑦),
at(𝑥) ⊇ at(𝑦), or at(𝑥) ∩ at(𝑦) = ∅, where at(𝑥) is the set of atoms of 𝑄 in which 𝑥 participates.

Roy et al. [54] and Sen et al. [56] independently proposed algorithms for identifying read-once

provenance for non-hierarchical queries in PTIME. Notice that finding the read-once form of a

formula (if it exists) is just an extreme case of representing a Boolean function by a minimum length

(∨,∧)-formula. Our solution is a natural generalization that is guaranteed to return a read-once

factorization in PTIME should there be one. We give an interesting connection by proving that the

tractable queries for our problem are a strict superset of hierarchical queries and thus the tractable

queries for probabilistic query evaluation.

Resilience. The resilience problem [24, 25] is a variant of the deletion propagation problem [8, 19]

focusing on Boolean queries: Given 𝐷 |= 𝑄 , what is the minimum number of tuples to remove

(called a “contingency set”) in order to make the query false? We give an interesting connection

by proving that the tractable queries for our problem are a strict subset of the tractable queries
for resilience. Concretely, we show that the structural hardness criterion for resilience also makes

the factorization problem hard. We achieve separation by giving a query that is easy for resilience

yet hard to factorize. Additionally, we hypothesize that linear queries Addititonally, very recent

concurrent work by us on resilience [44] has made a similar observation that the LP relaxation of a

natural ILP formulation for resilience solves all PTIME queries exactly, which suggests a deeper

connection of our problems with general reverse data management problems [46].

Linear Optimization. The question of when an Integer Linear Program (ILP) is tractable has

many theoretical and practical consequences [13]. Since we model our problem as an ILP, we can

leverage some known results for ILPs to evaluate the complexity of our problem. We show that

for a certain class of queries, the constraint matrices of our ILP are Totally Unimodular [55] and

hence the ILP is guaranteed to be solvable in PTIME. Additionally, we find cases that do not fit
known tractable classes, such as Total Unimodularity [55], Iterative Rounding [41], or Balanced

Matrices [12]. We nevertheless prove that they are in PTIME and can be solved efficiently by ILP
solvers. We believe that additional optimization theory will be instrumental in completing the

dichotomy. From a practical perspective, modeling our problem as an ILP allows us to use highly

optimized solvers [35] to obtain exact results even for hard queries.

Relation to Holistic Join Algorithms. Our approach has an interesting conceptual connection

to “holistic” join algorithms [1] that rely on not just a single tree decomposition (thus one query
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plan) but rather multiple tree decompositions (thus multiple plans) for different output tuples. Very
similarly, our approach also carefully assigns different witnesses to different query plans.

3 FORMAL SETUP
This section introduces our notation and defines the problem minFACT i.e. the problem of finding

the minimal factorization of the provenance of a query.

3.1 Standard database notations
We write 𝐷 for the database, i.e. the set of tuples in the relations. A conjunctive query (CQ) is a first-

order formula 𝑄 (y) = ∃x (𝑔1 ∧ . . . ∧ 𝑔𝑚) where the variables x = (𝑥1, . . . , 𝑥ℓ ) are called existential

variables, y are called the head variables and each atom 𝑔𝑖 represents a relation 𝑔𝑖 = 𝑅 𝑗𝑖 (x𝑖 ) where
x𝑖 ⊆ x ∪ y.1 W.l.o.g., we discuss only connected queries.

2
We write var(𝑋 ) for the set of variables

occurring in atom/ relation/ query/ formula 𝑋 and at(𝑥) for the set of atoms that contain variable

𝑥 . We write [w/x] as a valuation (or substitution) of query variables x by constants w. These

substitutions may be written explicitly by “domain-annotating” variables with domain constants as

subscripts. Domain-annotated tuples use such domain-annotated variables as subscripts, e.g. 𝑟𝑥1,𝑦2
represents a tuple of relation 𝑅(𝑥,𝑦) with 𝑥 = 1 and 𝑦 = 2. We sometimes informally omit the

variables and use the notation 𝑟𝑣1𝑣2 ...𝑣𝑎 where 𝑣1𝑣2 . . . 𝑣𝑎 are the domain values of var(𝑅) in the

order that they appear in atom 𝑅. Thus, 𝑟12 also represents 𝑅(1, 2). A self-join-free (sj-free) CQ is

one where no relation symbol occurs more than once and thus every atom represents a different

relation. Thus, for sj-free CQs, one may refer to atoms and relations interchangeably. We focus on

Boolean queries (i.e., where y = ∅), since the problem of finding the minimal factorization of the

provenance for one particular output tuple of a non-Boolean query immediately reduces to the

Boolean query case (see e.g. [57]).
3
Unless otherwise stated, a query in this paper denotes a sj-free

Boolean CQ. Appendix A defines further notation.

3.2 Boolean and Provenance formulas
The terms provenance and lineage are used in the literature with slightly different meanings. While

lineage was originally formalized in [15], we follow the modern treatment of data provenance as
denoting a proposition formula that corresponds to the Boolean provenance semiring of Green et al.

[33, 34], which is the commutative semiring of positive Boolean expressions (B[𝑋 ],∨,∧, 0, 1). We

sometimes write ∨ as semiring-plus (⊕) and ∧ as times (⊗).
We assign to every tuple 𝑡 ∈ 𝐷 a provenance token, i.e. we interpret each tuple as a Boolean variable.

Then the provenance formula (equivalently, provenance expression) 𝜑𝑝 of a query 𝑄 :−𝑅1 (x1), . . . ,
𝑅𝑚 (x𝑚) on 𝐷 is the positive Boolean DNF formula

Prov(𝑄, 𝐷) =
∨

𝜃 :𝐷 |=𝑄 [𝜃 (x)/x]
𝑅1

(
𝜃 (x1)

)
∧ · · · ∧ 𝑅𝑚

(
𝜃 (x𝑚)

)
where 𝐷 |= 𝑄 [𝜃 (x)/x] denotes that 𝜃 (x) is a valuation or assignment of x to constants in the active

domain that make the query true over database 𝐷 . Notice that for sj-free queries, this DNF is always

1
We follow the conventional notation for boolean CQs that omits writing the existential quantification and that replaces ∧
by a comma. W.l.o.g., we assume that x𝑖 is a tuple of only variables and don’t write the constants. Selections can always be

directly pushed into the database before executing the query. In other words, for any constant in the query, we can first

apply a selection on each relation and then consider the modified query with a column removed.

2
Results for disconnected queries follow immediately by factorizing each of the query components independently.

3
A solution to Boolean queries immediately also provides an answer to a non-Boolean query𝑄 (y) : For each output tuple

𝑡 ∈ 𝑄 (𝐷 ) , solve the problem for a Boolean query𝑄 ′ that replaces all head variables y with constants of the output tuple 𝑡 .
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𝑅 𝑥

𝑟1 1

𝑟2 2

𝑟3 3

𝑆 𝑥 𝑦

𝑠11 1 1

𝑠12 1 2

𝑠23 2 3

𝑠33 3 3

𝑠13 1 3

𝑇 𝑦

𝑡1 1

𝑡2 2

𝑡3 3

(a) 𝐷 with and 𝐷′ without 𝑠13

𝑅 𝑆 𝑇

𝑟1

𝑟2

𝑟3

𝑡1

𝑡2

𝑡3

𝑠11

𝑠12

𝑠23

𝑠33

𝑠13

(b) Bipartite join graph

Fig. 2. Examples 1 and 2: (a): Database instance with provenance tokens to the left of each tuple, e.g. 𝑠12 for
𝑆 (1, 2). (b): Prov(𝑄★

2
, 𝐷) for 𝑄★

2
:−𝑅(𝑥), 𝑆 (𝑥,𝑦),𝑇 (𝑦) represented as bipartite graph. 𝐷 denotes the database

with the orange tuple 𝑠13 and 𝐷′ denotes the database without it.

𝑚-partite as each disjunct contains one tuple from each of the𝑚 tables and that the notions of

provenance polynomial and provenance formula are interchangeable.

Read-once. For a formula 𝜑 , we denote by var(𝜑) the set of variables that occur in 𝜑 , and

by len(𝜑) its length, i.e., the number of its literals.
4
A provenance is called read-once if it can be

represented in read-once form, i.e. there is an equivalent formula in which each literal appears

exactly once [30, 37, 48]. This is possible iff that equivalent formula can be built up recursively from

the provenance tokens by disjunction (and conjunction), s.t. whenever 𝜑 = 𝜑1 ∨𝜑2 (or 𝜑 = 𝜑1 ∧𝜑2),

then var(𝜑1) ∩ var(𝜑2) = ∅.
Witnesses. We call a witness w a valuation of all variables x that is permitted by 𝐷 and that

makes 𝑄 true (i.e. 𝐷 |= 𝑄 [w/x]).5 The set of witnesses witnesses(𝑄,𝐷) (shorthand𝑊 ) is then

witnesses(𝑄, 𝐷) =
{
w

�� 𝐷 |= 𝑄 [w/x]
}
.

Since every witness implies exactly one set of𝑚 tuples from 𝐷 that make the query true, we will

slightly abuse the notation and also refer to this set of tuples as a “witness.” We will also use

“witness” to refer to a product term in a DNF of the provenance polynomial.

Example 1 (Provenance). Consider the Boolean 2-star query 𝑄★
2
:−𝑅(𝑥), 𝑆 (𝑥,𝑦),𝑇 (𝑦) over the

database 𝐷 ′ in Fig. 2 (ignore the tuple 𝑠13 for now). Each tuple is annotated with a Boolean variable
(or provenance token) 𝑟1, 𝑟2, . . .. The provenance 𝜑𝑝 is the Boolean expression about which tuples
need to be present for 𝑄★

2
to be true:

𝜑𝑝 = 𝑟1𝑠11𝑡1 ∨ 𝑟1𝑠12𝑡2 ∨ 𝑟2𝑠23𝑡3 ∨ 𝑟3𝑠33𝑡3 (1)

This expression contains |var(𝜑𝑝 ) | = 10 variables, however has a length of len(𝜑𝑝 ) = 12 because
variables 𝑟1 and 𝑡3 are repeated 2 times each. The witnesses are witnesses(𝑄★

2
, 𝐷 ′) = {(1, 1), (1, 2),

(2, 3), (3, 3)} and their respective tuples are {𝑟1, 𝑠11, 𝑡1}, {𝑟1, 𝑠12, 𝑡2}, {𝑟2, 𝑠23, 𝑡3}, and {𝑟3, 𝑠33, 𝑡3}.
The provenance can be re-factored into a read-once factorization 𝜑 ′ which is a factorized repre-

sentation of the provenance polynomial in which every variable occurs once, and thus len(𝜑 ′) | =
|var(𝜑 ′) | = 10. It can be found in PTIME in the size of the database [31]:

𝜑 ′ = 𝑟1 (𝑠11𝑡1 ∨ 𝑠12𝑡2) ∨ (𝑟2𝑠23 ∨ 𝑟3𝑠33)𝑡3

4
Notice that the length of a Boolean expression𝜑 is also at times defined as the total number of symbols (including operators

and parentheses, e.g. in [14]). In our formulation, we only care about the number of variable occurrences.

5
Note that our notion of witness slightly differs from the one used in provenance literature where a “witness” refers to a

subset of the input database records that is sufficient to ensure that a given output tuple appears in the result of a query [11].
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2
𝑦
3

𝑡2𝑦
2

⊲⊳𝑥2,𝑦3 𝑠23𝑥
2
𝑦
3

𝑡3𝑦
3

(b) Domain-annotated FT

𝑦1 𝑥1

𝑥2

𝑦2

𝑦3

(c) VEO Factorization Forest (VEOFF)

{𝑟1, 𝑠11, 𝑡1}:𝑦1 𝑥1

S

{𝑟2, 𝑠22, 𝑡2}: 𝑥2 𝑦2

{𝑟2, 𝑠23, 𝑡3}: 𝑥2 𝑦3

(d) VEO instances

𝑣2: 𝑦 𝑥
R

S

T

𝑣1: 𝑥 𝑦
R

S

T

(e) VEOs

Fig. 3. Representation of a factorization as a mapping of witnesses to VEOs for an example database under
query 𝑄★

2
. Theorem 4.5 shows the correspondence of (a) via (b) to (c). Theorem 4.6 shows the correspondence

of (c) via (d) to (e) for some minimal factorization tree.

3.3 Minimal factorization minFACT

For a provenance 𝜑𝑝 = Prov(𝑄, 𝐷) as DNF, we want to find an equivalent formula 𝜑 ′ ≡ 𝜑𝑝 with

the minimum number of literals.

Definition 3.1 (FACT). Given a query 𝑄 and database 𝐷 , we say that (𝐷,𝑘) ∈ FACT(𝑄) if there is
a formula 𝜑 ′ of length len(𝜑 ′) ≤ 𝑘 that is equivalent to the expression 𝜑𝑝 = Prov(𝑄,𝐷).

Our focus is to determine the difficulty of this problem in terms of data complexity [60], i.e.,

we treat the query size |𝑄 | as a constant. We are interested in the optimization version of this

decision problem: given 𝑄 and 𝐷 , find the minimum 𝑘 such that (𝐷,𝑘) ∈ FACT(𝑄). We refer to this

optimization variant as the minFACT problem and use minFACT(𝑄,𝐷) to refer to the length of the

minimal size factorization for the provenance of database 𝐷 under query 𝑄 .

Example 2 (FACT). Now consider the provenance of 𝑄★
2
over the modified database 𝐷 with tuple

𝑠13 from Fig. 2. It has no read-once form and a minimal size formula is

𝜑 ′′ = 𝑟1 (𝑠11𝑡1 ∨ 𝑠12𝑡2 ∨ 𝑠13𝑡3) ∨ (𝑟2𝑠23 ∨ 𝑟3𝑠33)𝑡3
We see that len(𝜑 ′′) = 12. It follows that (𝐷, 12) ∈ FACT(𝑄★

2
). At the same time, (𝐷, 11) ∉ FACT(𝑄★

2
)

and thus minFACT(𝑄★
2
, 𝐷) = 12.

4 SEARCH SPACE FOR minFACT

Factorizations. In order to find the minimal factorization of a provenance formula, we first define

a search space of all permissible factorizations. Each factorized formula can be represented as a

factorization tree (or FT), where each literal of the formula corresponds to a leaf node,
6
and internal

6
A variable may appear in multiple leaves just as it can in a factorized formula.
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nodes denote the ⊕ and ⊗ operators of the commutative provenance semiring. The length (size) of a

FT is the number of leaves. We allow the semiring operations to be 𝑘-ary (thus even unary) and use

prefix notation for the operators when writing FTs in linearized text. Notice that the space of FTs is
strictly larger than the space of factorized expressions: E.g., the FT ⊗(𝑟1, 𝑠1, 𝑡1) is not equivalent
to ⊗(𝑟1, ⊗(𝑠1, 𝑡1)), although they represent the same formula 𝑟1𝑠1𝑡1. We consider FTs as equivalent
under commutativity i.e. we treat ⊗(𝑟1, 𝑠1, 𝑡1) as equivalent to ⊗(𝑠1, 𝑡1, 𝑟1). Furthermore, w.l.o.g., we

only consider trees in which the operators ⊕, ⊗ alternate: E.g., ⊗(𝑟1, ⊗(𝑠1, 𝑡1)) is not alternating but
represents the same formula as the alternating tree ⊗(𝑟1, ⊕(⊗(𝑠1, 𝑡1))) using unary ⊕. Henceforth,
we use factorization trees or FTs as a short form for alternating factorization trees.

Variable Elimination Order (VEO). FTs describe tuple-level factorizations, however, they fail

to take into account the structure (and resulting join dependencies) of the query producing the

provenance. For this purpose, we define query-specific Variable Elimination Orders (VEOs). They are

similar to VEOs in general reasoning algorithms, such as bucket elimination [20] and VEOs defined
in FDBs [49] for the case of no caching (i.e. corresponding to formulas, not circuits). However, our

formulation allows each node to have a set of variables instead of a single variable. This allows

VEOs to have a 1-to-1 correspondence to the sequence of variables projected away in an “alternating”

query plan, in which projections and joins alternate, just as in our FTs (details in [43]). Furthermore,

we show VEOs can be “annotated” with a data instance and “merged” to form forests that describe a

minimal factorization tree of any provenance formula.

Definition 4.1 (Variable Elimination Order (VEO)). A VEO 𝑣 of a query 𝑄 is a rooted tree whose

nodes are labeled with non-empty sets of query variables s.t. (𝑖) each variable of 𝑄 is assigned to

exactly one node of 𝑣 , and (𝑖𝑖) all variables x for any atom 𝑅(x) in 𝑄 must occur in the prefix of

some node of 𝑣 .

Definition 4.2 (VEO instance). Given a VEO 𝑣 and witnessw, a VEO instance 𝑣 ⟨w⟩ is the rooted tree
resulting from annotating the variables x in 𝑣 with the domain values of w.

In order to refer to a VEO in-text, we use a linear notation with parentheses representing sets of

children. To make it a unique serialization, we need to assume an ordering on the children of each

parent. For notational convenience, we leave out the parentheses for nodes with singleton sets. For

example, 𝑥←𝑦, (instead of {𝑥}←{𝑦}) and {𝑥,𝑦} are two valid VEOs of 𝑄★
2
. We refer to the unique

path of a node to the root as its prefix.

Example 3 (VEO and VEO instance). Consider the 3-chain Query 𝑄∞
3
:−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧,𝑢).

An example VEO is 𝑣 = 𝑧←(𝑢,𝑦←𝑥) [43]. To make it a unique serialization, we need to assume an
ordering on the children of each parent. Notice that our definition of VEO also allows sets of variables
as nodes. As an extreme example, the legal query plan 𝑃 ′ = 𝜋−𝑥𝑦𝑧𝑢 Z

(
𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧,𝑦)

)
corresponds to a VEO 𝑣 ′ with one single node containing all variables. In our short notation, we denote
nodes with multiple variables in brackets without commas between the variables to distinguish them
from children: 𝑣 ′ = {𝑥𝑦𝑧𝑢}.
Now consider a witness w = (1, 2, 3, 4) for (𝑥,𝑦, 𝑧,𝑢), which we also write as w = (𝑥1, 𝑦2, 𝑧3, 𝑢4).

The VEO instance of w for 𝑣 is then 𝑣 ⟨w⟩ = 𝑧3←(𝑢4, 𝑦2←𝑥1). Notice our notation for domain values
arranged in a tree: In order to make the underlying VEO explicit (and avoiding expressions such as
𝑣 ⟨w⟩ = 3← (4← 2, 1) which would become quickly ambiguous) we include the variable names
explicitly in the VEO instance. We sometimes refer to them as “domain-annotated variables.”

Definition 4.3 (VEO table prefix). Given an atom 𝑅 in a query 𝑄 and a VEO 𝑣 , the table prefix 𝑣𝑅 is

the smallest prefix in 𝑣 that contains all the variables x ∈ var(𝑅).
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Similarly to 𝑣 ⟨w⟩ denoting an instance of a given VEO 𝑣 for a specific witness w, we also define a

table prefix instance 𝑣𝑅 ⟨w⟩ for a given table prefix 𝑣𝑅 and witness w.

Example 4 (VEO table prefix and VEO table prefix instance). Consider again the VEO 𝑣 =

𝑧←(𝑢,𝑦←𝑥) in Example 3. The table prefix of table 𝑆 (𝑦, 𝑧) on 𝑣 is 𝑣𝑆 = 𝑧←𝑦. Assume a set of two
witnesses𝑊 = {(𝑥1, 𝑦1, 𝑧1, 𝑢1), (𝑥1, 𝑦1, 𝑧1, 𝑢2)}. Then for both witnesses w1 and w2, the table prefix
instances for 𝑆 are identical: 𝑣𝑆 ⟨w1⟩ = 𝑣𝑆 ⟨w2⟩ = 𝑧1←𝑦1 [43].

Definition 4.4 (VEO factorization forest (VEOFF)). A VEOFFV of provenance 𝜑𝑝 of database 𝐷 over

query 𝑄 is a forest whose nodes are labeled with non-empty sets of domain-annotated variables,

such that: (1) For every w ∈ witnesses(𝑄,𝐷) there exists exactly one subtree inV that is a VEO
instance of w and 𝑄 ; (2) There is no strict sub-forest ofV that fulfills condition (1).

Example 5 (VEO Factorization Forest). Continuing with the 𝑄∞
3
query, and the witnesses

𝑊 = {(𝑥1, 𝑦1, 𝑧1, 𝑢1), (𝑥1, 𝑦1, 𝑧1, 𝑢2)} as in Example 4, we illustrate several valid and invalid VEOFFs
(with accompanying figures in the online appendix [43]). We represent a forest of VEO instances
in-text as a set of trees {𝑡1, 𝑡2, ...}.

The forestV1 = {𝑥1←(𝑢1, 𝑢2, (𝑦1 ← 𝑧1))} is a valid VEOFF since (1) for both𝑤1 and𝑤2 there is
exactly one subtree each inV that is a VEO instance. These subtrees are 𝑥1←(𝑢1, (𝑦1 ← 𝑧1)) and
𝑥1←(𝑢1, (𝑦1 ← 𝑧1)). This VEOFF also satisfies property (2) removing any variable would lead to a
VEOFF that does not satisfy property (1).

The forestV2 = {𝑥1←(𝑢1, (𝑦1 ← 𝑧1)), 𝑦1←(𝑧1, (𝑥1 ← 𝑢1))} is also a valid VEOFF since (1) for
both 𝑤1 and 𝑤2 there is exactly one subtree each in V that is a VEO instance. These subtrees are
𝑥1←(𝑢1, (𝑦1 ← 𝑧1)) and 𝑦1←(𝑧1, (𝑥1 ← 𝑢2)). This VEOFF also satisfies property (2) removing any
variable would lead to a VEOFF that does not satisfy property (1).
The forest V3 = {𝑥1 ← (𝑢1, (𝑦1 ← 𝑧1)), 𝑦1 ← (𝑧1, (𝑥1 ← 𝑢1 ← 𝑢2))} is not a valid VEOFF,

although it satisfies property (1) with the same subtrees above. It does not satisfy property (2) since
removing 𝑢2 in the second tree would lead to a VEOFF that still satisfies property (1).

Theorem 4.5 (Factorizations and VEOs). There exist transformations from FTs to VEOFFs and
back such that the transformations can recover the original FT for at least one minimal size FT 𝜑 ′ of
any provenance formula 𝜑𝑝 .

Proof Intuition. We describe a transformation from FTs to VEOFFs via domain-annotated FTs
as intermediate step (Fig. 3). A domain-annotated FT is constructed as follows: We first replace the
⊗ operator with a join (⊲⊳) and the ⊕ operator with a projection (𝜋) and label the leaves with the
domain-annotated variables. We then recursively label each join and projection bottom-up as follows:
(1) label each ⊲⊳ by the union of variables of its children, and (2) label each 𝜋 with the subset of variables
of its children that are not required for subsequent joins (this can be inferred from the query). To get the
VEOFF instance, we remove all variables on joins that appear in ancestor joins. We remove the leaves
and absorb all non-join (projection) nodes into their parents (eliminating the root projection node).

We show that if this transformation succeeds then it is a bijection and can be reversed. The only case
when this transformation fails is when it results in an empty annotation for a node, i.e. when there is a
join after which no variable is projected away (since by design VEOs do not permit empty nodes). In
that case, the FT can always be simplified by removing a ⊕ node and merging two ⊗ nodes.

Theorem 4.6 (minFACT with VEOs). There exists a transformation that constructs FTs of a prove-
nance 𝜑𝑝 from mappings of each witness of 𝜑𝑝 to a VEO of 𝑄 , and there exists a mapping that is
transformed into a minimal size factorization tree 𝜑 ′ of 𝜑𝑝 under this transformation.
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Proof Intuition. From Theorem 4.5, we know that for every provenance formula 𝜑𝑝 there exists
a minimal size FT that has a reversible transformation to a VEOFF. We show all such VEOFFs can be
constructed by assigning a VEO to each witness of 𝜑𝑝 . This is constructed by defining a merge operation
on VEOs that greedily merges common prefixes.

Minimal Variable Elimination Orders (mveo). By reducing the problem of finding the minimal

factorization to that of assigning a VEO to each witness, we have so far shown that FACT is in NP
with respect to data complexity.

7
However, we can obtain a more practically efficient result by

showing that we need not consider all VEOs, but only the Minimal Variable Elimination Orders of a
query or mveo(𝑄). We can define a partial order ⪯ on VEOs of a query 𝑄 as follows: 𝑣1 ⪯ 𝑣2 if for

every relation 𝑅𝑖 ∈ 𝑄 the variables in the 𝑅𝑖 table prefix of 𝑣1 are a subset of the variables of the

𝑅𝑖 table prefix of 𝑣2, i.e. ∀𝑅𝑖 ∈ 𝑄 : var(𝑣𝑅𝑖
1
) ⊆ var(𝑣𝑅𝑖

2
). mveo(𝑄) then is the set of all VEOs of 𝑄

that are minimal with respect to this partial order ⪯. For 𝑄★
2
, there are only two minimal variable

elimination orders 𝑥←𝑦 and 𝑦←𝑥 , but not {𝑥,𝑦}, and for 𝑄★
3
, there are only 6, despite 13 possible

VEOs in total. Interestingly, mveo(𝑄) corresponds exactly to Minimal Query Plans as defined in

work on probabilistic databases [28], and we can use this connection to leverage prior algorithms

for computing mveo(𝑄).

Theorem 4.7 (minFACT with mveos). There exists a transformation that constructs FTs of a prove-
nance 𝜑𝑝 from mappings of each witness of 𝜑𝑝 to a VEO 𝑣 ∈ mveo(𝑄), and there exists a mapping that
is transformed into a minimal size factorization tree 𝜑 ′ of 𝜑𝑝 under this transformation.

5 ILP FORMULATION FOR minFACT

Given a set of witnesses𝑊 = witnesses(𝑄, 𝐷) for a query𝑄 over some database 𝐷 , we can use the

insight of Theorem 4.7 to describe a 0-1 Integer Linear Program (ILP) minFACT_ILP (3) that chooses
a 𝑣 ∈ mveo or equivalently a minimal query plan, for each w ∈𝑊 , s.t. the resulting factorization is

of minimal size. The size of the ILP is polynomial in 𝑛 = |𝐷 | and exponential in the query size.

ILP Decision Variables. The ILP is based on two sets of binary variables: Query Plan Variables

(QPV ) 𝑞 use a one-hot encoding for the choice of a minimal VEO (or equivalently minimal query

plan) for each witness, and Prefix Variables (PV ) 𝑝 encode sub-factorizations that are a consequence

of that choice. Intuitively, shared prefixes encode shared computation through factorization.

(1) Query Plan Variables (QPV ): For each witness w ∈𝑊 and each minimal VEO 𝑣 ∈ mveo(𝑄) we
define a binary variable 𝑞 [𝑣 ⟨w⟩], which is set to 1 iff VEO 𝑣 is chosen for witness w.

8

(2) Prefix Variables (PV ): All witnesses must be linked to a set of prefix variables, by creating

instances of VEO prefixes that are in a query-specific set called the Prefix Variable Format (PVF ). This
set PVF is composed of all table prefixes of all minimal VEOs 𝑣 ∈ mveo(𝑄). Notice that prefix variables
can be shared by multiple witnesses, which captures the idea of joint factorization. Additionally, we

define a weight (or cost9) 𝑐 (𝑣𝑅) for each table prefix 𝑣𝑅 ∈ PVF ; this weight is equal to the number

of tables that have the same table prefix for a given VEO. From that PVF set, then binary prefix

variables 𝑝 [𝑣𝑅 ⟨w⟩] are defined for each table prefix 𝑣𝑅 ∈ PVF and w ∈𝑊 .

ILP Objective. The ILP should minimize the length of factorization len, which can be calculated

by counting the number of times each tuple is written. If a tuple is a part of multiple witnesses, it

may be repeated in the factorization. However, if the tuple has the same table prefix instance across
different witnesses (whether as part of the same VEO or not), then those occurrences are factorized

7
This follows from the fact that the number of witnesses is polynomial in the size of the database, and the number of VEOs
only depends on the query size.

8
Notice that we use indexing in brackets 𝑞 [𝑣⟨w⟩ ] instead of the more common subscript notation 𝑞𝑣⟨w⟩ since each 𝑣⟨w⟩
can depict a tree. Our bracket notation is more convenient.

9
We write 𝑐 for weight (or cost) to avoid confusion with witnesses w.
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min

∑
𝑣𝑅 ⟨w⟩∈PV

𝑐 (𝑣𝑅) · 𝑝 [𝑣𝑅 ⟨w⟩]

s.t.

∑
𝑣∈mveo(𝑄 )

𝑞 [𝑣 ⟨w⟩] ≥ 1, ∀w ∈𝑊

𝑝 [𝑣𝑅 ⟨w⟩] ≥ ∑
𝑣𝑅 ⟨w⟩ prefix of 𝑣⟨w⟩ 𝑞 [𝑣 ⟨w⟩], ∀𝑝 [𝑣𝑅 ⟨w⟩] ∈ PV

𝑝 [𝑣𝑅 ⟨w⟩] ∈ {0, 1}, ∀𝑝 [𝑣𝑅 ⟨w⟩] ∈ PV
𝑞 [𝑣 ⟨w⟩] ∈ {0, 1}, ∀𝑞 [𝑣 ⟨w⟩] ∈ QPV

(3)

Fig. 4. ILP Formulation for minFACT

𝑦

𝑧 𝑢

𝑥
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1
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(a) 𝑣1 = 𝑦←(𝑥, 𝑧←𝑢)

𝑧

𝑦 𝑥

𝑢

RS

T

11

0

1

(b) 𝑣2 = 𝑧←(𝑢,𝑦←𝑥)
Fig. 5. Example 6: mveo for 3-chain query 𝑄∞

3
.

together and the tuple is written just once in the factorization. Thus, len is the weighted sum of

all selected table prefix instances. The weight accounts for tuples of different tables that have the

same table prefix under the same VEO. Since 𝑝 [𝑣𝑅 ⟨w⟩] = 0 for unselected table prefixes, we can

calculate len as:

len =
∑︁

𝑣𝑅 ⟨w⟩∈PV
𝑐 (𝑣𝑅) · 𝑝 [𝑣𝑅 ⟨w⟩] (2)

ILP Constraints. A valid factorization of𝑊 must satisfy three types of constraints:

(1) Query Plan Constraints: For every witness w ∈𝑊 , some 𝑣 ∈ mveo(𝑄) must be selected.
10
For

example, for w = (𝑥1, 𝑦1) under 𝑄★
2
, we enforce that: 𝑞 [𝑥1←𝑦1] + 𝑞 [𝑦1←𝑥1] ≥ 1.

(2) Prefix Constraints: For any given table prefix 𝑝 , it must be selected if any one of the VEOs that
has it as a prefix is selected. Since (under a minimization optimization) only one VEO is chosen per

witness, we can say that the value of 𝑝 [𝑣𝑅 ⟨w⟩] must be at least as much as the sum of all query

plan variables 𝑞 [𝑣 ⟨w⟩] such that 𝑣𝑅 ⟨w⟩ is a prefix of 𝑣 ⟨w⟩. For example, we enforce that 𝑝 [𝑥1]
must have value at least as much as 𝑞 [𝑥1 ← 𝑦1 ← 𝑧1] + 𝑞 [𝑥1 ← 𝑧1 ← 𝑦1]. But we cannot enforce
𝑝 [𝑥1] ≥ 𝑞 [𝑥1 ← 𝑦1 ← 𝑧1] + 𝑞 [𝑥1 ← 𝑧1 ← 𝑦2] (as both VEOs do not belong to the same witness.)

(3) Boolean Integer Constraints: Since a VEO is either selected or unselected, we set all variables in

PV and QPV to 0 or 1.

Theorem 5.1 (ILP correctness). The objective of minFACT_ILP for a query 𝑄 and database 𝐷 is
always equal to minFACT(𝑄, 𝐷).

Corollary 5.2. FACT, the decision variant of minFACT, is in NP.

Example 6 (ILP formulation for 3-chain qery). Consider the 3-Chain query 𝑄∞
3
:−𝑅(𝑥,𝑦),

𝑆 (𝑦, 𝑧),𝑇 (𝑧,𝑢) with a set of 2 witnesses𝑊 = {(𝑥1, 𝑦1, 𝑧1, 𝑢1), (𝑥1, 𝑦1, 𝑧1, 𝑢2)} and provenance in DNF
of 𝑟11𝑠11𝑡11 + 𝑟11𝑠11𝑡12. Using the dissociation based algorithm [28], we see that this query has 2
10
We wish to have exactly one query plan or minimal VEO per witness, but in a minimization problem, it suffices to say that

at least one 𝑣 ∈ mveo is selected - if multiple are selected, either one of them arbitrarily still fulfills all constraints.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.



104:12 Neha Makhija and Wolfgang Gatterbauer

minimal query plans corresponding to the two VEOs shown in Fig. 5. We use these VEOs to first build
the set QPV (Query Plan Variables) and enforce a query plan constraint for each of the 2 witnesses:

𝑞 [𝑦1←(𝑥1, 𝑧1←𝑢1)] + 𝑞 [𝑧1←(𝑢1, 𝑦1←𝑥1)] ≥ 1

𝑞 [𝑦1←(𝑥1, 𝑧1←𝑢2)] + 𝑞 [𝑧1←(𝑢2, 𝑦1←𝑥1)] ≥ 1

Then, we calculate the elements of the set PVF (Prefix Variable Format) as well as their weights.
For the two VEOs from Fig. 5, and the three tables 𝑅, 𝑆 , 𝑇 , we get 6 distinct table prefixes:

VEO 𝑣1 VEO 𝑣2

𝑣𝑅
1
= 𝑦←𝑥 𝑣𝑅

2
= 𝑧←𝑦←𝑥

𝑣𝑆
1
= 𝑦←𝑧 𝑣𝑆

2
= 𝑧←𝑦

𝑣𝑇
1
= 𝑦←𝑧←𝑢 𝑣𝑇

2
= 𝑧←𝑢

We add all these table-prefixes to the PVF . Since no table prefix is repeated, they all are assigned
weight 𝑐 = 1. Notice that prefixes 𝑦 for 𝑣1 and 𝑧 for 𝑣2 are no table prefixes (and thus have weight
𝑐 = 0 and do not participate in the objective).

From the set of table prefixes PVF , we then create the set of prefix variables PV , one for each table
prefix and each witness w ∈𝑊 , and define their prefix constraints. The prefix constraints necessary
for witness w1 = (𝑥1, 𝑦1, 𝑧1, 𝑢1) are as follows:

𝑝 [𝑦1←𝑥1] ≥ 𝑞 [𝑦1←(𝑥1, 𝑧1←𝑢1)] 𝑝 [𝑦1←𝑧1] ≥ 𝑞 [𝑦1←(𝑥1, 𝑧1←𝑢1)]
𝑝 [𝑦1←𝑧1 ← 𝑢1] ≥ 𝑞 [𝑦1←(𝑥1, 𝑧1←𝑢1)] 𝑝 [𝑧1←𝑦1 ← 𝑥1] ≥ 𝑞 [𝑧1←(𝑢1, 𝑦1←𝑥1)]

𝑝 [𝑧1←𝑦1] ≥ 𝑞 [𝑧1←(𝑢1, 𝑦1←𝑥1)] 𝑝 [𝑧1←𝑢1] ≥ 𝑞 [𝑧1←(𝑢1, 𝑦1←𝑥1)]
The prefix constraints for witness w2 = (𝑥1, 𝑦1, 𝑧1, 𝑢2) are:

𝑝 [𝑦1←𝑥1] ≥ 𝑞 [𝑦1←(𝑥1, 𝑧1←𝑢2)] 𝑝 [𝑦1←𝑧1] ≥ 𝑞 [𝑦1←(𝑥1, 𝑧1←𝑢2)]
𝑝 [𝑦1←𝑧1 ← 𝑢2] ≥ 𝑞 [𝑦1←(𝑥1, 𝑧1←𝑢2)] 𝑝 [𝑧1←𝑦1 ← 𝑥1] ≥ 𝑞 [𝑧1←(𝑢2, 𝑦1←𝑥1)]

𝑝 [𝑧1←𝑦1] ≥ 𝑞 [𝑧1←(𝑢2, 𝑦1←𝑥1)] 𝑝 [𝑧1←𝑢2] ≥ 𝑞 [𝑧1←(𝑢2, 𝑦1←𝑥1)]
Notice that we have 12 constraints (one for each pair of witness and table prefix), yet only 8 distinct
prefix variables due to common prefixes across the two witnesses (which intuitively enables shorter
factorizations). For this query, for every witness, there are 6 prefix variables in the objective (some of
which are used by multiple witnesses), 1 Query Plan constraint, and 6 Prefix constraints.

Finally, we define the objective to minimize the weighted sum of all 8 prefix variables in 𝑃𝑉 (here
all weights are 1):

len = 𝑝 (𝑦1 ← 𝑥1) + 𝑝 [𝑦1 ← 𝑧1] + 𝑝 [𝑦1 ← 𝑧1 ← 𝑢1] + 𝑝 [𝑧1 ← 𝑦1 ← 𝑥1] + 𝑝 [𝑧1 ← 𝑦1]+
𝑝 [𝑧1 ← 𝑢1] + 𝑝 [𝑦1 ← 𝑧1 ← 𝑢2] + 𝑝 [𝑧1 ← 𝑢2]

In our given database instance, len has an optimal value of 4 when the prefixes 𝑝 [𝑧1 ← 𝑦1 ← 𝑥1],
𝑝 [𝑧1 ← 𝑦1], 𝑝 [𝑧1 ← 𝑢1] and 𝑝 [𝑧1 ← 𝑢2] are set to 1. This corresponds to the minimal factorization
𝑟11𝑠11 (𝑡11 + 𝑡12).

6 PTIME ALGORITHMS
We provide two PTIME algorithms: (1) a Max-Flow Min-Cut (MFMC) based approach and (2)

an LP relaxation from which we obtain a rounding algorithm that gives a guaranteed |mveo|-
approximation for all instances. Interestingly, Section 8 will later show that both algorithms (while

generally just approximations) give exact answers for all currently known PTIME cases of minFACT.
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Fig. 6. A flow graph 𝐹 for minFACT. The goal is to disconnect the source and the target nodes with minimum
cuts. White 𝑞 and 𝑝 nodes can be cut and have capacities (in orange) equal to the weights of the corresponding
variables in the ILP objective. Edges and connector nodes (in blue) have infinite capacity and cannot be cut.

6.1 MFMC-based Algorithm for minFACT
Given witnesses𝑊 and mveo(𝑄), we describe the construction of a factorization flow graph 𝐹 s.t.

any minimal cut of 𝐹 corresponds to a factorization of𝑊 . A minimal cut of a flow graph is the

smallest set of nodes whose removal disconnects the source (⊥) and target (⊤) nodes [62]. Since
minimal cuts of flow graphs can be found in PTIME [18], we obtain is a PTIME approximation for

minFACT.

6.1.1 Construction of a factorization flow graph We construct a flow graph 𝐹 s.t. there

exists a valid factorization of𝑊 of length ≤ 𝑐 if the graph has a cut of size 𝑐 . 𝐹 is constructed by

transforming decision variables in the ILP into "cut" nodes in the flow graph that may be cut at a

penalty equal to their weight. Any valid cut of the graph selects nodes that fulfill all constraints of

the ILP. We prove this by describing the construction of 𝐹 (Fig. 6).

(1) mveo order : We use Ω to describe a total order on mveo (i.e. a total order on the set of minimal

query plans). In Fig. 6, mveo is ordered by Ω = (𝑣1, 𝑣2, . . . , 𝑣𝑘 ) where 𝑘 = |mveo|.
(2) QPV : For each witness w, connect the query plan variables (QPV ) as defined by Ω. Since all

paths from source to target must be disconnected, at least one mveo must be cut from this path.

Thus, 𝐹 enforces the Query Plan Constraints.
(3) PV : For each witness w and prefix variable 𝑝 , identify the first and last query variable for

which 𝑝 is a prefix and connect the corresponding prefix variable node to connector nodes before

and after these query variables. For example, in Fig. 6, for w2, 𝑝1 starts at 𝑞 [𝑣1⟨w2⟩] and ends at

𝑞 [𝑣2⟨w2⟩] implying that 𝑝1 is a prefix for 𝑞 [𝑣1⟨w2⟩] and 𝑞 [𝑣2⟨w2⟩], but no query plan after that.

Now if either of 𝑞 [𝑣1⟨w2⟩] or 𝑞 [𝑣2⟨w2⟩] are in the minimal cut, the graph is not disconnected until

𝑝1 is added to the cut as well. These nodes guarantee that 𝐹 enforces Prefix Constraints.
(4) Weights: Assign each 𝑞 and 𝑝 node in 𝐹 the same weight as in the ILP objective. Recall that

this weight is the number of tables with the same table prefix under the same VEO and that it helps

calculate the correct factorization length.

Thus, a min-cut of 𝐹 contains at least one plan for each witness, along with all the prefixes that are

necessary for the plan. This guarantees a valid (although not necessarily minimal) factorization.
11

11
If a min-cut contains more than one plan for a witness, then one can pick either of the plans arbitrarily to obtain a valid

factorization.
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6.1.2 When is the MFMC-based algorithm optimal? In the previous subsection we saw that

a min-cut of 𝐹 always represents a valid factorization. However, the converse is not true: there can

be factorizations that do not correspond to a cut. The reason is that spurious constraints might arise

by the interaction of paths; those additional constraints no longer permit the factorization. There

are two types of spurious paths:

(1) Spurious Prefix Constraints. Spurious prefix constraints arise when a prefix node 𝑝 is in

parallel with a query node 𝑞 of which it is not a prefix. This happens when a 𝑞 is not prefixed by 𝑝 ,

but other query plans before and after are. To avoid this, the ordering Ω must be a Running-Prefixes
(RP) ordering.12

Definition 6.1 (Running-Prefixes (RP) ordering). An ordering Ω = (𝑞1, 𝑞2, . . . , 𝑞𝑘 ) is an RP Ordering
and satisfies the RP-Property iff for any 𝑝 that is a prefix for both 𝑞𝑖 and 𝑞 𝑗 (𝑖 < 𝑗 ), 𝑝 is a prefix for

all 𝑞𝑘 with 𝑖 ≤ 𝑘 ≤ 𝑗 .

Example 7 (RP ordering). Assume mveo = {(𝑥← 𝑦← 𝑧), (𝑥← 𝑧← 𝑦), (𝑧← 𝑦← 𝑥)}. Then
Ω1= ((𝑥←𝑦←𝑧), (𝑧←𝑦←𝑥), (𝑥←𝑧←𝑦)) is not an RP ordering since the 1st and 3rd VEO share
prefix 𝑥 , however the 2nd starts with 𝑧. In contrast, Ω2 = ((𝑥←𝑦←𝑧), (𝑥←𝑧←𝑦), (𝑧←𝑦←𝑥)) is
an RP ordering.

It turns out that for some queries RP-Orderings are impossible (such as 𝑄◦
6WE [43]). However, we

are able to adapt our algorithm for such queries with a simple extension called nested orderings. We

first define two query plans as nestable if each query plan can be “split” into paths from root to

leaf such that they have an equal number of resulting paths, and that the resulting paths can be

mapped to each other satisfying the property that corresponding paths use the same set of query

variables. Nested orderings then are partial orders of query plans such that the pair of query plans

may be uncomparable iff they are nestable. Finally, we define Nested RP-orderings as those such

that all paths in the partial nested order satisfy the RP property. Intuitively, nested orderings add

parallel paths for a single witness to model independent decisions. We can now prove that there

always is an ordering that avoids spurious prefix constraints.

Theorem 6.2 (Running Prefixes (RP) Property). For any query, there is a simple or nested
ordering Ω that satisfies the RP Property.

(2) Spurious Query Constraints. Query Plan constraints are enforced by paths from source to

target such that at least one node from each path must be chosen for a valid factorization. Due to

sharing of prefix variables, these paths can interact and can lead to additional spurious paths that
place additional spurious constraints on the query nodes. The existence of spurious query constraints
does not necessarily imply that the algorithm is not optimal. In fact, Section 8 shows that𝑄△

𝑈
and𝑄∞

4

have spurious query paths, yet the min-cut is guaranteed to correspond to the minimal factorization.
However, if the presence of spurious query paths prevents any of the minimal factorizations to be

a min-cut for 𝐹 , then we say that the factorization flow graph 𝐹 has “leakage” [43]. Since all paths
along one witness are cut by construction, a leakage path must contain nodes from at least two

different witnesses.

Definition 6.3 (Leakage). Leakage exists in a factorization flow graph if no minimal factorization

is a valid cut of the graph. A leakage path is a path from source to target such that a valid minimal

factorization is possible without using any node on the path.

Optimality of algorithm. Thus, a solution found by the MFMC-based algorithm is guaranteed

to be optimal if it has two properties:

12
Notice that this concept is reminiscent of the running intersection property [4, 6] and the consecutive ones property [10].

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.



Minimally Factorizing the Provenance of Self-join Free ConjunctiveQueries 104:15

𝑥𝑦 𝑧

S

T

R

1 2

(a) 𝑣1 = 𝑥𝑦←𝑧

𝑦𝑧 𝑥

T

RS

1 2

(b) 𝑣2 = 𝑦𝑧←𝑥

𝑧𝑥 𝑦

R

ST

1 2

(c) 𝑣3 = 𝑧𝑥←𝑦

𝑅 𝑥 𝑦

𝑟00 0 0

𝑟01 0 1

𝑆 𝑦 𝑧

𝑠00 0 0

𝑠10 1 0

𝑇 𝑧 𝑥

𝑡00 0 0

(d) Database instance 𝐷

⊤⊥

𝑥!𝑦!

𝑧!𝑥!

𝑧!𝑥! ← 𝑦!

𝑦"𝑧! ← 𝑥!

𝑦!𝑧!

𝑦!𝑧! ← 𝑥!

𝑧!𝑥! ← 𝑦"

𝑦"𝑧!

1
2

1

1

2

2 2

1

22

1
𝑥!𝑦"

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝑥!𝑦! ← z!

𝑥!𝑦" ← z!

(e) Flow graph 𝐹 .

Fig. 7. Example 8: Three mveo’s for triangle query 𝑄△ :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧, 𝑥) (a)-(c), example database
instance 𝐷 (d), and constructed flow graph for mveo order Ω = [𝑣1, 𝑣2, 𝑣3] (e). Notice that several variables
may appear in the same node of a mveo (e.g., 𝑥 and 𝑦 in 𝑥𝑦 ← 𝑧).

(1) The ordering Ω is a Running-Prefixes ordering or a nested Running-Prefixes ordering (always

possible).

(2) There is no leakage in the flow graph (not always possible).

We use these properties in Section 7 and Section 8 to prove a number of queries to be in PTIME.
In fact, all currently known PTIME cases can be solved exactly with the MFMC-based algorithm

via a query-dependent ordering of the mveos.

Example 8 (Flow graph construction for TriangleQuery). Consider the triangle query
𝑄△ :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧, 𝑥). The query has 3 minimal Query Plans corresponding to mveos shown
in Figs. 7a to 7c. The provenance of 𝑄△ over the database shown in Fig. 7d, has 2 witnesses:𝑊 =

{𝑟00𝑠00𝑡00, 𝑟01𝑠10𝑡00}. We build a flow graph to find a factorization. (1) We choose Ω = (𝑣1, 𝑣2, 𝑣3) as
linear order for the mveo. (2) For each witness, we connect their three query plan variables 𝑞 [𝑣 ⟨w⟩]
in this order serially from source to target. (3) In 𝑄△ , each mveo has a single prefix. We attach these
variables in parallel to their corresponding query variables. Notice that the prefix 𝑧0𝑥0 is shared
by both w1 and w2, and therefore is attached in parallel to both corresponding query variables. (4)
Finally, we add weights corresponding to the number of tables having each prefix (see Figs. 7a to 7c).
The resulting flow graph is shown in Fig. 7e. The min-cut (highlighted in purple) consists of the

nodes {𝑧0𝑥0←𝑦0, 𝑧0𝑥0, 𝑧0𝑥0←𝑦1}. The corresponding factorization using the selected query plans
is 𝑡00 (𝑟00𝑠00 ∨ 𝑟01𝑠10). The weighted cut-value (5) is equal to the length of the factorization. This
factorization is minimal.

6.2 LP relaxation for minFACT and an LP relaxation-based approximation
Linear Programming relaxation and rounding is a commonly-used technique to find PTIME approx-

imations for NP-C problems [61]. The LP relaxation for minFACT simply removes the integrality

constraints on all the problem variables. The LP relaxation may pick multiple query plans for a

given witness, each with fractional values. We present a rounding scheme for minFACT and show it

to be a |mveo|-factor approximation of the optimal solution. The rounding algorithm simply picks
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the maximum fractional value of query plan variables for each witness, breaking ties arbitrarily.

Finally, it counts only the prefix variables necessitated by the chosen query plans.

Theorem 6.4. The described rounding scheme gives a PTIME, |mveo|-factor approximation for
minFACT.

6.2.1 When is the LP relaxation optimal? Experimentally, we observed that the LP solution

of many queries are equal to the integral ILP solution. This is surprising since the ILP does not

satisfy any of the known requirements for tractable ILPs such as Total Unimodularity, Balanced

Matrices, or even Total Dual Integrality [55]. Interestingly, we next prove that the LP relaxation

has the same objective value as the original ILP whenever the MFMC-based algorithm is optimal.

Lemma 6.5. If all database instances can be solved exactly by the MFMC-based algorithm for a
given query 𝑄 (i.e. for each database instance there exists an ordering that generates a leakage-free
graph), then the LP relaxation of minFACT always has the same objective as the original ILP.

This result is important as it exposes cases for which the optimal objective value of minFACT_ILP
is identical to the optimal objective value of a simpler LP relaxation. The only example we know of

where this has been shown using flow graphs is in recent work on resilience [44]. In such cases,

standard ILP solvers return the optimal solution to the original ILP in PTIME. This is due to ILP solvers

using an LP-based branch and bound approach which starts by computing the LP relaxation bound

and then exploring the search space to find integral solutions that move closer to this bound. If

an integral solution is encountered that is equal to the LP relaxation optimum, then the solver is

done [36]. We use this knowledge in Section 8 to show that ILP solvers can solve all known PTIME
cases in PTIME.

7 RECOVERING READ-ONCE INSTANCES
It is known that the read-once factorization of a read-once instance can be found in PTIME with

specialized algorithms [31, 54, 56]. We prove that our more general MFMC based algorithm and LP

relaxation are always guaranteed to find read-once formulas when they exist, even though they are

not specifically designed to do so.

Theorem 7.1 (Read-Once). minFACT can be found in PTIME by (a) the MFMC based algorithm,
and (b) the LP relaxation, for any query and database instance that permits a read-once factorization.

8 TRACTABLE QUERIES FOR minFACT

We now go beyond cases when PROB is in PTIME (i.e. read-once instances). We first prove that

minFACT(𝑄) is PTIME for the large class of queries with 2 minimal query plans. We then show

examples of queries with 3 and 5 minimal query plans that are PTIME as well. All these newly

recovered PTIME cases, along with the previously known read-once cases, can be solved exactly
with both our PTIME algorithms from Section 6. Finally, we hypothesize that minFACT is in PTIME
for any linear query.

8.1 All queries with ≤2 minimal query plans
We prove that our MFMC-based algorithm has no leakage and thus always finds the minimal

factorization for queries with at most 2 minimal VEOs (2-MQP) queries such as𝑄★
2
and𝑄∞

3
. We also

give an alternative proof that shows that any ILP generated by such a query is guaranteed to have

a Totally Unimodular (TU) constraint matrix, and thus is PTIME solvable [55].

Theorem 8.1 (2-MQP Queries). minFACT can be found in PTIME for any query with max 2

minimal VEOs by (a) the MFMC based algorithm, and (b) the LP relaxation.
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Fig. 8. We show that 𝑄△ is hard in Section 9 because it contains an “active triad.” Surprisingly, for 𝑄△

𝑈
, a

query that differs by a single unary relation, the minimal factorization can always be found in PTIME by
either using our MFMC based algorithm from Section 6.1 or our LP relaxation from Section 6.2.

The theorem recovers the hierarchical queries which are equivalent to 1-MQP queries since they

have one “safe plan” [17]. The PTIME nature of 1-MQP queries also follows from Theorem 7.1, as

all hierarchical queries have read-once formulations.

Corollary 8.1. minFACT for Hierarchical Queries is in PTIME.

Corollary 8.2. The classes of queries for which minFACT is in PTIME is a strict super-class of those
for which probabilistic query evaluation is in PTIME (if 𝑃 ≠ 𝑁𝑃 ).

8.2 Two queries with ≥ 3 minimal query plans
Triangle-unary 𝑄△

𝑈
. 𝑄△

𝑈
is structurally similar to 𝑄△ (Fig. 8) and both have |mveo| = 3. However,

while 𝑄△ contains an “active triad” [44] and is hard, we show that 𝑄△
𝑈
is in PTIME by proving that

the factorization flow graph has no leakage. Interestingly, 𝑄△
𝑈
’s ILP is not guaranteed to have a TU

constraint matrix, yet the MFMC algorithm is optimal, and the LP relaxation recovers the minimal

ILP objective, showing that PTIME cases extend beyond Total Unimodularity of the ILP constraint

matrix.

Theorem 8.2 (𝑄△
𝑈
is easy). minFACT(𝑄△

𝑈
, 𝐷) can be found in PTIME for any database 𝐷 by (a) the

MFMC based algorithm, and (b) the LP relaxation.

4-chain 𝑄∞
4
. This is arguably the most involved proof in the paper. 𝑄∞

4
has |mveo| = 5. Yet in a

similar proof to 𝑄△ , we can show that the MFMC-based algorithm and the LP are both optimal.

This surprising result leads to the conjecture that minFACT for longer chains, and all linear queries

are in PTIME.

Theorem 8.3 (𝑄∞
4
is easy). minFACT(𝑄∞

4
, 𝐷) can be found in PTIME for any database 𝐷 by (a) the

MFMC based algorithm, and (b) the LP relaxation.

8.3 Conjecture for LinearQueries
A query is acyclic if it has a join tree, i.e. it permits a placement of its atoms into a tree s.t. for any

two atoms, the intersection of variables is contained in the union of the variables of the atoms on

the unique path between them.
13
A query is linear if it permits a join path.

14
We have spent a lot

of time trying to prove the hardness of such queries without success. Based on our intuition we

hypothesize that all linear queries are in PTIME. Our intuition is strengthened by the fact that over

many experimental evaluations, the LP relaxation of the minFACT_ILP was always integral and

optimal, thus being able to solve the problem in PTIME.
13
The concept is alternatively called coherence, the running intersection property, connected subgraph property [4, 6, 58],

and is used in the definition of the junction tree algorithm [42] and tree decompositions [21, 53].

14
This definition, introduced in [44], is more restrictive than linear queries defined in the original work on resilience [24] as

it does not allow linearizable queries (those that can be made linear by “making dominated atoms exogenous”).
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Hypothesis 1 (PTIME conjecture). If 𝑄 is a linear query, then minFACT(𝑄,𝐷) can be found in
PTIME for any database 𝐷 .

We think that additional insights from optimization theory are needed to explain the integrality

of the solution to the LP relaxation and to thus prove this conjecture. We leave open the structural

criterion that separates the easy and hard cases.

9 HARD QUERIES FOR minFACT

In this section, we first prove that all queries that contain a structure called “an active triad” (e.g.
𝑄★
3
and 𝑄△) are NP-C. We then prove another query to be NP-C that does not contain an active

triad, but a “co-deactivated triad.” We thus show that while active triads are sufficient for FACT of a

query to be NP-C, they are not necessary, and minFACT is a strictly harder problem than RES.
Queries with Active triads.We repeat here the necessary definitions introduced in the context

of resilience under bag semantics [44]. A triad is a set of three atoms, T = {𝑅1, 𝑅2, 𝑅3} s.t. for every
pair 𝑖 ≠ 𝑗 , there is a path from 𝑅𝑖 to 𝑅 𝑗 that uses no variable occurring in the third atom of T .
Here a path is an alternating sequence of relations and variables 𝑅1 − x1 − 𝑅2 − · · · x𝑝−1 − 𝑅𝑝 s.t. all

adjacent relations 𝑅𝑖 , 𝑅𝑖+1 share variables x𝑖 . In a query 𝑄 with atoms 𝑅 and 𝑆 , we say 𝑅 dominates
𝑆 iff var(𝑅) ⊂ var(𝑆). We call an atom 𝑔 in a query independent iff there is no other atom in the

query that contains a strict subset of its variables (and hence it is not dominated). A triad is active
iff none of its atoms are dominated.

Theorem 9.1 (Active Triads are hard). FACT(𝑄) for a query 𝑄 with an active triad is NP-C.

Separation between RES and minFACT. A triad is deactivated if any of the three atoms is

dominated. A triad is co-deactivated if all three atoms are dominated only by the same (non-

empty) set of atoms. The co-deactivated triangle query𝑄△
cod

:−𝐴(𝑤), 𝑅(𝑤, 𝑥,𝑦), 𝑆 (𝑤,𝑦, 𝑧), 𝑇 (𝑤, 𝑧, 𝑥)
contains no active triads: notice that the tables 𝑅, 𝑆 and 𝑇 are not independent and have no

independent paths to each other. Thus, RES(𝑄△
cod
) is PTIME. However,𝑄△

cod
contains a co-deactivated

triad since 𝑅, 𝑆 and 𝑇 are all dominated only by atom 𝐴. We next prove that FACT(𝑄△
cod
) is NP-C,

thus showing a strict separation in the complexities of the two problems.

Theorem 9.2 (Co-Deactivated Triads are hard). FACT(𝑄) for a query𝑄 with a co-deactivated
triad is NP-C.

10 CONCLUSION
We propose an ILP framework for minimizing the size of provenance polynomials for sj-free CQs.

We show that our problem is NP-C and thus in a lower complexity class than the general Minimum

Equivalent Expression (MEE) problem. Key to our formulation is a way to systematically constrain

a space of possible minimum factorizations thus allowing us to build an ILP, and connecting

minimal variable elimination orders to minimal query plans developed in the context of probabilistic

databases. We complement our hardness results with two unified PTIME algorithms that can recover

exact solutions to a strict superset of all prior known tractable cases.
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A NOMENCLATURE AND CONVENTIONS

Symbol Definition

𝑄 a self-join free Boolean CQ

𝑅, 𝑆,𝑇 ,𝑈 relational tables

𝑟𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑢𝑖 tuple identifiers

𝑥,𝑦, 𝑧 query variables

𝑚 number of atoms in a query

𝑁 size of database |𝐷 |
𝜑,𝜓 propositional formulas / expressions

var(𝑋 ) the set of variables in atom / relation / formula 𝑋

𝑊 set of witnesses𝑊 = witnesses(𝑄,𝐷)
w witness

VEO(𝑄) set of all legal VEOs for Q
mveo(𝑄) set of minimal VEOs for Q
𝑘 = |mveo(𝑄) | number of minimal VEOs
𝑣 ⟨w⟩ a VEO instance of VEO 𝑣 over witness w
var(𝑔𝑖 ) set of variables of a query 𝑞 or atom 𝑔𝑖
𝑃 query plan

P set of plans

𝐹 flow graph

Z
(
. . .

)
provenance join operator in prefix notation

𝜋x, 𝜋−y provenance project operators: onto x, or project y away

x unordered set or ordered tuple

a/x substitute values a for variables x
Q[x] indicates that x represents the set of all existentially quantified variables for Boolean query 𝑄

len Length of a Factorization

QPV Query Plan Variables of an ILP

PV Prefix Variables of an ILP

𝑞 [. . .] a ILP decision query plan variable

𝑝 [. . .] a ILP decision prefix variable

c weight (or cost) of variables in the ILP / nodes in the Factorization Flow Graph

Ω An Ordering of mveo chosen for MFMC based algorithm

(𝑣1, 𝑣2, . . . , 𝑣𝑘 ) An ordered list of VEOs, VEOFFs or any other set of objects

Query Definition

𝑄∞
2

2-chain query 𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧)
𝑄∞
3

3-chain query 𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧,𝑢)
𝑄∞
4

4-chain query 𝑃 (𝑢, 𝑥), 𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧, 𝑣)
𝑄∞
5

5-chain query 𝐿(𝑎,𝑢), 𝑃 (𝑢, 𝑥), 𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧, 𝑣)
𝑄★
2

2-star query 𝑅(𝑥)𝑆 (𝑦),𝑊 (𝑥,𝑦)
𝑄★
3

3-star query 𝑅(𝑥)𝑆 (𝑦),𝑇 (𝑧)𝑊 (𝑥,𝑦, 𝑧)
𝑄△ Triangle query 𝑅(𝑥,𝑦)𝑆 (𝑦, 𝑧),𝑇 (𝑧, 𝑥)
𝑄△
𝑈

Triangle-unary query𝑈 (𝑥)𝑅(𝑥,𝑦)𝑆 (𝑦, 𝑧),𝑇 (𝑧, 𝑥)
𝑄◦
6WE 6-cycle query with end points 𝐴(𝑥), 𝑅(𝑥,𝑦), 𝐵(𝑦), 𝑆 (𝑦, 𝑧), 𝐶 (𝑧), 𝑇 (𝑧,𝑢) 𝐷 (𝑢), 𝑈 (𝑢, 𝑣), 𝐸 (𝑣), 𝑉 (𝑣,𝑤),

𝐹 (𝑤), 𝑊 (𝑤, 𝑥)
𝑄△
cod

Co-dominated triangle query 𝐴(𝑤), 𝑅(𝑤, 𝑥,𝑦), 𝑆 (𝑤,𝑦, 𝑧), 𝑇 (𝑤, 𝑧, 𝑥)

We write [𝑘] as short notation for the set {1, . . . , 𝑘} and use boldface to denote tuples or ordered
sets, (e.g., x = (𝑥1, . . . , 𝑥ℓ )). We fix a relational vocabulary R = (𝑅1, . . . , 𝑅𝑚), and denote with
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arity(𝑅𝑖 ) the number of attributes of a relation 𝑅𝑖 . For notational convenience, we assume w.l.o.g.

that there are no two atoms 𝑅𝑖 and 𝑅 𝑗 with var(𝑅𝑖 ) = var(𝑅 𝑗 ). A database instance over R is

𝐷 = (𝑅𝐷
1
, . . . , 𝑅𝐷

𝑚), where each 𝑅𝐷
𝑖 is a finite relation. We call the elements of 𝑅𝐷

𝑖 tuples and write 𝑅𝑖

instead of 𝑅𝐷
𝑖 when 𝐷 is clear from the context. With some abuse of notation we also denote 𝐷 as

the set of all tuples, i.e. 𝐷 =
⋃

𝑖 𝑅𝑖 . The active domain dom(𝐷) is the set of all constants occurring
in 𝐷 . W.l.o.g., we commonly use dom(𝐷) ⊂ N ∪ {𝑎, 𝑏, . . . , 𝑧}. The size of the database instance is
𝑛 = |𝐷 |, i.e. the number of tuples in the database.

15

B ADDITIONAL DETAILS ON Section 2: RELATEDWORK
B.1 Boolean Factorization
Fig. 9 illustrates the landscape of known results for the problem of Minimum Equivalent Expressions

(MEE) applied to formulas.

The general problem of MEE has been long known to be NP-hard [26]. However, only relatively

recently it has been proved to be Σ2

𝑝 -complete [7]. Various important classes of this problem have

been studied, a fundamental one being the factorization of DNF expressions. The MinDNF problem

[59], deals with finding the minimum equivalent DNF expression of an input DNF formula, and is

also known to be Σ2

𝑝 -complete. However, if the input to the MinDNF is the truth table (or set of all

true assignments of the formula) then the problem is NP-C [2]. If we take away the restriction that

the factorized formula must be a DNF, then the problem of finding the minimum factorization of

an input table is known as the Minimum Formula Size Problem (MFSP) and is shown to be in NP

and (ETH)-hard [40].

Another important class of restrictions is over monotone formulas (thus we do not allow negatives

in input or output formulas). Surprisingly, we do not know of any work that proves the complexity

of the general monotone boolean factorization problem. However, there are many interesting and

important restrictions for which complexity results are known. One such important sub-class is

that of read-once formulas, which can be factorized in PTIME [32]. For Monotone formulas with

DNF input and output restrictions, the problem can be solved in logspace by eliminating monomials

[29]. Interestingly the problem monotone formula factorization of an arbitrary formula with a DNF

restriction on the output only has differing complexity based on the input encoding of the length

of the factorization. Checking if the minimum size of a DNF for a monotone formula is at most k is

PP-complete, but for k in unary, the complexity of the problem drops to coNP [29]. The intuition is

that in this problem, (which can be seen as “dual” of minFACT since it has a DNF output restriction

instead of a DNF input restriction), the optimal output (a DNF) can be exponentially larger than

the input (any monotone formula).

Our problem of minFACT is a further restriction on the MEE problem applied to a monotone DNF.

Provenance formulas for sj-free CQs are 𝑘-partite monotone formulas that satisfy join dependencies.

We prove in this paper that the problem is NP-C, in general, and further identify interesting PTIME
subcases.

B.2 Probabilistic Inference and Dissociation
Given a provenance that is not read-once, one can still upper and lower bound its probability

efficiently via dissociation [27]: Let 𝜑 and 𝜑 ′ be two Boolean formulas with variables x and x′,
respectively. Then 𝜑 ′ is a dissociation of 𝜑 if there exists a substitution 𝜃 : x′ → x s.t. 𝜑 ′ [𝜃 ] = 𝜑 .

If 𝜃−1 (𝑥) = {𝑥 ′
1
, . . . , 𝑥 ′

𝑑
}, then variable 𝑥 dissociates into 𝑑 variables 𝑥 ′

1
, . . . , 𝑥 ′

𝑑
. Every provenance

expression has a unique read-once dissociation up to renaming of variables. One application of

15
Notice that other work sometimes uses |dom(𝐷 ) | as the size of the database. Our different definition has no implication

on our complexity results but simplifies the discussions of our reductions.
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Σ
𝑝

2
-complete [7]

Σ
𝑝

2
-complete [59]

NP-C [2] In NP, (ETH) Hard [40]

NP-C
(minFACT)

PTIME [32]𝐿 [29]

Unary input:

Co-NPC [29]

Binary input:

PP-C [29]

Input = DNF
Output = DNF

Input = Truth Table

Input = Monotone

Input = Provenance

Input = Read-Once

Fig. 9. An overview of related work on the Exact, Minimal Equivalent Expression (MEE) problem applied to
formulas.

compiling provenance polynomials into their smallest representation is motivated by the following

known results on “oblivious bounds" [27]: (𝑖) lower and upper bounds for intractable expressions can

be found very efficiently; and (𝑖𝑖) those bounds work better the fewer times variables are repeated.

Similarly, anytime approximation schemes based on branch-and-bound provenance decomposition

methods [22, 23] give tighter bounds if Shannon expansions need to be run on fewer variables.

B.3 Resilience
The resilience of a Boolean query measures the minimum number of tuples in database 𝐷 , the

removal of which makes the query false. The optimization version of this decision problem is then:

given 𝑄 and 𝐷 , find the minimum 𝑘 so that (𝐷,𝑘) ∈ RES(𝑄). A larger 𝑘 implies that the query is

more “resilient” and requires the deletion of more tuples to change the query output. We know

from [24] that all hard queries must have a “triad” which is a set of three non-dominated atoms,

T = {𝑅1, 𝑅2, 𝑅3} s.t. for every pair 𝑖 ≠ 𝑗 , there is a path from 𝑅𝑖 to 𝑅 𝑗 that uses no variable occurring

in the other atom of T . In return, the tractable queries for RES are exactly those that are triad-free.

Example 9 (Resilience). The resilience for our example from Fig. 2 is 2 because removing the set
Γ = {𝑟1, 𝑡3} removes one tuple from each witness and there is no smaller set that achieves that.

Received December 2023; revised February 2024; accepted March 2024

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 104. Publication date: May 2024.


	Abstract
	1 Introduction
	2 Related Work
	3 Formal Setup
	3.1 Standard database notations
	3.2 Boolean and Provenance formulas
	3.3 Minimal factorization minFACT

	4 Search Space for minFACT
	5 ILP Formulation for minFACT
	6 PTIME Algorithms
	6.1 MFMC-based Algorithm for minFACT
	6.2 LP relaxation for minFACT and an LP relaxation-based approximation

	7 Recovering Read-Once instances
	8 Tractable Queries for minFACT
	8.1 All queries with 2 minimal query plans
	8.2 Two queries with 3 minimal query plans
	8.3 Conjecture for Linear Queries

	9 Hard Queries for minFACT
	10 Conclusion
	References
	A Nomenclature and Conventions
	B Additional details on SEC:RELATEDWORK: Related Work
	B.1 Boolean Factorization
	B.2 Probabilistic Inference and Dissociation
	B.3 Resilience


